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My Perspective

* Masses == software developers
e Reconfigurable computing == FPGA

* Can SDEs program FPGAs without learning HW design or gettingan EE
degree?

* Can high-level programming languages be compiled down to FPGAs?
* Not hardware description languages

e Can reconfigurable computing be made as easy as GPU programming?



Semantic Gap




Alternative View of Microsoft Catapult System

T * Another way of telling the same
story

* Design principles from this story
suggest an alternative approach



Microsoft Catapult

Better: Use Programmable Accelerators
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Accelerators == Non von Neumann Computers (NonvoN)

* Massively parallel Catapult

* Not general purpose e Simple to program directly from
* Not Turing complete (hon-Turing) Bing language model

* Instructions !=data * Quickly reprogrammable as

search model evolved
e “Easy” to implement

* High throughput at low clock
speed




Catapult Feature Extractor

Feature Extraction Accelerator L

e 54 state machines

e 2.6Kdynamicfeatures
extracted in less than 4us

(~600us in SW)
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Catapult Free-Form Expressions

Programmable FFE Soft Cores

» Soft processor for multi-
threaded throughput [CompFPU] | | [CompFPU] | | [CompFPU]

* 4 HW threads per core

* 6 cores share a complex ALU foare

* log, divide, exp, float/int
conversions [CompFPU] | | [CompFPU CompFPU

* 10 clusters (240 HW threads) | lc]
per FPGA
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PuDianNao: A Polyvalent Machine Learning Accelerator
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Abstract
Machine Leaming (ML) techniques are pervasive tools
in various emerging commercial spplications, but have to
be sccommodated by powerful computer systems to pro-
cess very large data. Although general-puspose CPUs and
GPUs have provided straightforward solutions, their cnergy-
efficiencics arc limited due to their excessive supports for
flexibility. Hardware accelerators may achieve better cnergy-
butcach often lya
single ML technique (family). According 1o the famous No-
Free-Lunch theorem in the ML domain, however, an ML
technique performs well on a dataset may perform poorly
on another datasct, which implics that such accelerator may
sometimes lead to poor leaming accuracy. Even if regardless
of the leaming accuracy, such accelerator can still become
inapplicable simply because the concrete ML task is altered,
or the user chooses another ML technique.
In this study, we prescet an ML accelerator called Pu-
DianNao, which accommodates seven representative ML
techniques, including k-means, k-ncarest ncighbors, naive
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bayes, support vector machine, linear regression, classifi-
cation tree, and decp neural network. Benefited from our
thorough analysis on computational primitives and local-
ity properties of different ML techniques, PuDianNao can
perform up to 1056 GOP/s (e.g.. additions and multiplica-
tions) in an arca of 3.51 mm*?, und consumes 596 mW oaly.
Compared with the NVIDIA K20M GPU (28am process),
PuDianNao (65nm process) is 1.20x faster, and can reduce
the energy by 12841x

1. Introduction

In the era of data explosion, Machine Learning (ML) tech-
niques have become pervasive tools in emerging large-scale
commercial applications such as social network, recommen:
dation system, computational advertising, and image recog-
mition. Facebook generates over 10 Petzbyte (PB) log data
per moanth [6]. Taobao.com, the largest oaline retailer in
China, generates tens of Terabyte (TB) data every day [6].
The increasing amount of data poses great challenges to
ML technigues, as well as computer systems accommodat-
ing those techniques.

The most straightforward way 10 accelerate large-scale
ML is 1o design more powerful general-purpase CPUs and
GPUs. However, such processors must consume a large frac-
tion of transistors to flexibly support diverse application do-
mains, thus can often be inefficient for specific workloads.
In this context, there is a clear trend towards hardware accel-
erators that can execute specific workloads with very high

gy-ef y otfand For ML tech
that have broad yet important applications in both cloud
scrvers and mobile ends, of course, there have been some
successful FPGAJASIC accelerstors, but cach of which of-
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Figure 11: Accelerator architecture of PuDianNao.

Seven representative ML techniques

k-means

k-nearest neighbors
naive bayes

support vector machine
linear regression
classification tree

deep neural network

Liu, et al., PuDianNao: A Polyvalent Machine Learning Accelerator, ASPLOS 2015



Why Was NonvoN Architecture a Good Idea?

* Small compiler-HW semantic gap
* Some compilers (SM) could have been perl scripts
e Others (FFE) were sophisticated (~llvm) compilers

* HW was easy to get right and to extend
* Simple, regular, modular
e Can track software evolution

 Computations were fine-grain parallel, HW effective at exploiting
e Easy to compose computations in a pipeline

* “Soft” programmability for alternative language models
* <200 ms



Limitations

 Lack of generality

* Will not work as well when
* No parallelimplementation

* Complex HW (eg GPU)
* Too sophisticated compilation/programming model (eg GPU)
* Interpretation overhead
* Probably could do better with ‘pure’ HW implementation
* But, Bing language models change every 3 months

e Still requires HW designer to implement processors
* One-time expense, primitives change rarely
* More importantly, another topic for research
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Open Problems

* High-level description of domain-specific languages (DSL)
e Currently, DSL (mostly) described by imperativeimplementation

* Declarative techniques for implementing HL DSLs
* Current, DSL implemented by writing compiler and optimizer (using framework)

* High-level description of domain-specific processors (DSProc)

* Processordescriptionis an old idea. Time to revive?
* Possibleto derive DSProc from DSL?

* Techniques for implementation HL DSProcs
* Processorcompiler?

* Methodology for analyzing domain, designing DSL, co-desighing DSProc



LMS: Program Generation and Embedded Compilers in Scala

* Used to build DSL like Delite, Spiral, LegoBase

e DSLs are concise and expressive
e Constructinga DSL is still complex and requires compiler expertise

* Type-directed meta/macro programming

var n: Double = 0.0
var i: Int = 0
val end = data.length
while (1 < end) {

val x = data (i)

val ¢ = x > 0

if (¢) n += x }
println(n)



Putting on Compiler Hat

* High-level description of domain-specific languages V'
* Declarative techniques for implementing HL DSLs
* High-level description of domain-specific processors

* Techniques for implementation HL DSProcs



Programmer’s

CompterWriters-Nightmare
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